748 lines
21 KiB
C++
748 lines
21 KiB
C++
/*
|
|
DS3231.cpp: DS3231 Real-Time Clock library
|
|
Eric Ayars
|
|
4/1/11
|
|
|
|
Spliced in DateTime all-at-once reading (to avoid rollover) and unix time
|
|
from Jean-Claude Wippler and Limor Fried
|
|
Andy Wickert
|
|
5/15/11
|
|
|
|
Fixed problem with SD processors(no function call) by replacing all occurences of the term PM, which
|
|
is defined as a macro on SAMD controllers by PM_time.
|
|
Simon Gassner
|
|
11/28/2017
|
|
|
|
Fixed setting 12-hour clock in setHour function so that 12:xx AM is not stored as 00:xx and corrected
|
|
the setting of the PM flag for 12:xx PM. These address certain DS3231 errors in properly setting the
|
|
AM/PM (bit 5) flag in the 02h register when passing from AM to PM and PM to AM.
|
|
David Merrifield
|
|
04/14/2020
|
|
|
|
Released into the public domain.
|
|
*/
|
|
|
|
#include <DS3231.h>
|
|
|
|
// These included for the DateTime class inclusion; will try to find a way to
|
|
// not need them in the future...
|
|
#if defined(__AVR__)
|
|
#include <avr/pgmspace.h>
|
|
#elif defined(ESP8266)
|
|
#include <pgmspace.h>
|
|
#endif
|
|
// Changed the following to work on 1.0
|
|
//#include "WProgram.h"
|
|
#include <Arduino.h>
|
|
|
|
|
|
#define CLOCK_ADDRESS 0x68
|
|
|
|
#define SECONDS_FROM_1970_TO_2000 946684800
|
|
|
|
|
|
// Constructor
|
|
DS3231::DS3231() {
|
|
// nothing to do for this constructor.
|
|
}
|
|
|
|
// Utilities from JeeLabs/Ladyada
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// utility code, some of this could be exposed in the DateTime API if needed
|
|
|
|
// DS3231 is smart enough to know this, but keeping it for now so I don't have
|
|
// to rewrite their code. -ADW
|
|
static const uint8_t daysInMonth [] PROGMEM = { 31,28,31,30,31,30,31,31,30,31,30,31 };
|
|
|
|
// number of days since 2000/01/01, valid for 2001..2099
|
|
static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) {
|
|
if (y >= 2000)
|
|
y -= 2000;
|
|
uint16_t days = d;
|
|
for (uint8_t i = 1; i < m; ++i)
|
|
days += pgm_read_byte(daysInMonth + i - 1);
|
|
if (m > 2 && isleapYear(y))
|
|
++days;
|
|
return days + 365 * y + (y + 3) / 4 - 1;
|
|
}
|
|
|
|
static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) {
|
|
return ((days * 24L + h) * 60 + m) * 60 + s;
|
|
}
|
|
|
|
/*****************************************
|
|
Public Functions
|
|
*****************************************/
|
|
|
|
/*******************************************************************************
|
|
* TO GET ALL DATE/TIME INFORMATION AT ONCE AND AVOID THE CHANCE OF ROLLOVER
|
|
* DateTime implementation spliced in here from Jean-Claude Wippler's (JeeLabs)
|
|
* RTClib, as modified by Limor Fried (Ladyada); source code at:
|
|
* https://github.com/adafruit/RTClib
|
|
******************************************************************************/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// DateTime implementation - ignores time zones and DST changes
|
|
// NOTE: also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_second
|
|
|
|
DateTime::DateTime (uint32_t t) {
|
|
t -= SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970
|
|
|
|
ss = t % 60;
|
|
t /= 60;
|
|
mm = t % 60;
|
|
t /= 60;
|
|
hh = t % 24;
|
|
uint16_t days = t / 24;
|
|
uint8_t leap;
|
|
for (yOff = 0; ; ++yOff) {
|
|
leap = isleapYear(yOff);
|
|
if (days < 365 + leap)
|
|
break;
|
|
days -= 365 + leap;
|
|
}
|
|
for (m = 1; ; ++m) {
|
|
uint8_t daysPerMonth = pgm_read_byte(daysInMonth + m - 1);
|
|
if (leap && m == 2)
|
|
++daysPerMonth;
|
|
if (days < daysPerMonth)
|
|
break;
|
|
days -= daysPerMonth;
|
|
}
|
|
d = days + 1;
|
|
}
|
|
|
|
DateTime::DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t min, uint8_t sec) {
|
|
if (year >= 2000)
|
|
year -= 2000;
|
|
yOff = year;
|
|
m = month;
|
|
d = day;
|
|
hh = hour;
|
|
mm = min;
|
|
ss = sec;
|
|
}
|
|
|
|
// supported formats are date "Mmm dd yyyy" and time "hh:mm:ss" (same as __DATE__ and __TIME__)
|
|
DateTime::DateTime(const char* date, const char* time) {
|
|
static const char month_names[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
|
|
static const char buff[4]={'0','0','0','0'};
|
|
int y;
|
|
sscanf(date, "%s %d %d", buff, &d, &y);
|
|
yOff = y >= 2000 ? y - 2000 : y;
|
|
m = (strstr(month_names, buff) - month_names) / 3 + 1;
|
|
sscanf(time, "%d:%d:%d", &hh, &mm, &ss);
|
|
}
|
|
|
|
static uint8_t conv2d(const char* p) {
|
|
uint8_t v = 0;
|
|
if ('0' <= *p && *p <= '9')
|
|
v = *p - '0';
|
|
return 10 * v + *++p - '0';
|
|
}
|
|
|
|
// UNIX time: IS CORRECT ONLY WHEN SET TO UTC!!!
|
|
uint32_t DateTime::unixtime(void) const {
|
|
uint32_t t;
|
|
uint16_t days = date2days(yOff, m, d);
|
|
t = time2long(days, hh, mm, ss);
|
|
t += SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000
|
|
|
|
return t;
|
|
}
|
|
|
|
// Slightly modified from JeeLabs / Ladyada
|
|
// Get all date/time at once to avoid rollover (e.g., minute/second don't match)
|
|
static uint8_t bcd2bin (uint8_t val) { return val - 6 * (val >> 4); }
|
|
static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); }
|
|
|
|
bool isleapYear(const uint8_t y) {
|
|
if(y&3)//check if divisible by 4
|
|
return false;
|
|
//only check other, when first failed
|
|
return (y % 100 || y % 400 == 0);
|
|
}
|
|
|
|
DateTime RTClib::now() {
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0); // This is the first register address (Seconds)
|
|
// We'll read from here on for 7 bytes: secs reg, minutes reg, hours, days, months and years.
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 7);
|
|
uint8_t ss = bcd2bin(Wire.read() & 0x7F);
|
|
uint8_t mm = bcd2bin(Wire.read());
|
|
uint8_t hh = bcd2bin(Wire.read());
|
|
Wire.read();
|
|
uint8_t d = bcd2bin(Wire.read());
|
|
uint8_t m = bcd2bin(Wire.read());
|
|
uint16_t y = bcd2bin(Wire.read()) + 2000;
|
|
|
|
return DateTime (y, m, d, hh, mm, ss);
|
|
}
|
|
|
|
///// ERIC'S ORIGINAL CODE FOLLOWS /////
|
|
|
|
byte DS3231::getSecond() {
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x00);
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
return bcdToDec(Wire.read());
|
|
}
|
|
|
|
byte DS3231::getMinute() {
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x01);
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
return bcdToDec(Wire.read());
|
|
}
|
|
|
|
byte DS3231::getHour(bool& h12, bool& PM_time) {
|
|
byte temp_buffer;
|
|
byte hour;
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x02);
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
temp_buffer = Wire.read();
|
|
h12 = temp_buffer & 0b01000000;
|
|
if (h12) {
|
|
PM_time = temp_buffer & 0b00100000;
|
|
hour = bcdToDec(temp_buffer & 0b00011111);
|
|
} else {
|
|
hour = bcdToDec(temp_buffer & 0b00111111);
|
|
}
|
|
return hour;
|
|
}
|
|
|
|
byte DS3231::getDoW() {
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x03);
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
return bcdToDec(Wire.read());
|
|
}
|
|
|
|
byte DS3231::getDate() {
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x04);
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
return bcdToDec(Wire.read());
|
|
}
|
|
|
|
byte DS3231::getMonth(bool& Century) {
|
|
byte temp_buffer;
|
|
byte hour;
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x05);
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
temp_buffer = Wire.read();
|
|
Century = temp_buffer & 0b10000000;
|
|
return (bcdToDec(temp_buffer & 0b01111111)) ;
|
|
}
|
|
|
|
byte DS3231::getYear() {
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x06);
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
return bcdToDec(Wire.read());
|
|
}
|
|
|
|
void DS3231::setSecond(byte Second) {
|
|
// Sets the seconds
|
|
// This function also resets the Oscillator Stop Flag, which is set
|
|
// whenever power is interrupted.
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x00);
|
|
Wire.write(decToBcd(Second));
|
|
Wire.endTransmission();
|
|
// Clear OSF flag
|
|
byte temp_buffer = readControlByte(1);
|
|
writeControlByte((temp_buffer & 0b01111111), 1);
|
|
}
|
|
|
|
void DS3231::setMinute(byte Minute) {
|
|
// Sets the minutes
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x01);
|
|
Wire.write(decToBcd(Minute));
|
|
Wire.endTransmission();
|
|
}
|
|
|
|
// Following setHour revision by David Merrifield 4/14/2020 correcting handling of 12-hour clock
|
|
|
|
void DS3231::setHour(byte Hour) {
|
|
// Sets the hour, without changing 12/24h mode.
|
|
// The hour must be in 24h format.
|
|
|
|
bool h12;
|
|
byte temp_hour;
|
|
|
|
// Start by figuring out what the 12/24 mode is
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x02);
|
|
Wire.endTransmission();
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
h12 = (Wire.read() & 0b01000000);
|
|
// if h12 is true, it's 12h mode; false is 24h.
|
|
|
|
if (h12) {
|
|
// 12 hour
|
|
bool am_pm = (Hour > 11);
|
|
temp_hour = Hour;
|
|
if (temp_hour > 11) {
|
|
temp_hour = temp_hour - 12;
|
|
}
|
|
if (temp_hour == 0) {
|
|
temp_hour = 12;
|
|
}
|
|
temp_hour = decToBcd(temp_hour) | (am_pm << 5) | 0b01000000;
|
|
} else {
|
|
// 24 hour
|
|
temp_hour = decToBcd(Hour) & 0b10111111;
|
|
}
|
|
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x02);
|
|
Wire.write(temp_hour);
|
|
Wire.endTransmission();
|
|
}
|
|
|
|
void DS3231::setDoW(byte DoW) {
|
|
// Sets the Day of Week
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x03);
|
|
Wire.write(decToBcd(DoW));
|
|
Wire.endTransmission();
|
|
}
|
|
|
|
void DS3231::setDate(byte Date) {
|
|
// Sets the Date
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x04);
|
|
Wire.write(decToBcd(Date));
|
|
Wire.endTransmission();
|
|
}
|
|
|
|
void DS3231::setMonth(byte Month) {
|
|
// Sets the month
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x05);
|
|
Wire.write(decToBcd(Month));
|
|
Wire.endTransmission();
|
|
}
|
|
|
|
void DS3231::setYear(byte Year) {
|
|
// Sets the year
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x06);
|
|
Wire.write(decToBcd(Year));
|
|
Wire.endTransmission();
|
|
}
|
|
|
|
void DS3231::setClockMode(bool h12) {
|
|
// sets the mode to 12-hour (true) or 24-hour (false).
|
|
// One thing that bothers me about how I've written this is that
|
|
// if the read and right happen at the right hourly millisecnd,
|
|
// the clock will be set back an hour. Not sure how to do it better,
|
|
// though, and as long as one doesn't set the mode frequently it's
|
|
// a very minimal risk.
|
|
// It's zero risk if you call this BEFORE setting the hour, since
|
|
// the setHour() function doesn't change this mode.
|
|
|
|
byte temp_buffer;
|
|
|
|
// Start by reading byte 0x02.
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x02);
|
|
Wire.endTransmission();
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
temp_buffer = Wire.read();
|
|
|
|
// Set the flag to the requested value:
|
|
if (h12) {
|
|
temp_buffer = temp_buffer | 0b01000000;
|
|
} else {
|
|
temp_buffer = temp_buffer & 0b10111111;
|
|
}
|
|
|
|
// Write the byte
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x02);
|
|
Wire.write(temp_buffer);
|
|
Wire.endTransmission();
|
|
}
|
|
|
|
float DS3231::getTemperature() {
|
|
// Checks the internal thermometer on the DS3231 and returns the
|
|
// temperature as a floating-point value.
|
|
|
|
// Updated / modified a tiny bit from "Coding Badly" and "Tri-Again"
|
|
// http://forum.arduino.cc/index.php/topic,22301.0.html
|
|
|
|
byte tMSB, tLSB;
|
|
float temp3231;
|
|
|
|
// temp registers (11h-12h) get updated automatically every 64s
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x11);
|
|
Wire.endTransmission();
|
|
Wire.requestFrom(CLOCK_ADDRESS, 2);
|
|
|
|
// Should I do more "if available" checks here?
|
|
if(Wire.available()) {
|
|
tMSB = Wire.read(); //2's complement int portion
|
|
tLSB = Wire.read(); //fraction portion
|
|
|
|
int16_t itemp = ( tMSB << 8 | (tLSB & 0xC0) ); // Shift upper byte, add lower
|
|
temp3231 = ( (float)itemp / 256.0 ); // Scale and return
|
|
}
|
|
else {
|
|
temp3231 = -9999; // Impossible temperature; error value
|
|
}
|
|
|
|
return temp3231;
|
|
}
|
|
|
|
void DS3231::getA1Time(byte& A1Day, byte& A1Hour, byte& A1Minute, byte& A1Second, byte& AlarmBits, bool& A1Dy, bool& A1h12, bool& A1PM) {
|
|
byte temp_buffer;
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x07);
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 4);
|
|
|
|
temp_buffer = Wire.read(); // Get A1M1 and A1 Seconds
|
|
A1Second = bcdToDec(temp_buffer & 0b01111111);
|
|
// put A1M1 bit in position 0 of DS3231_AlarmBits.
|
|
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>7;
|
|
|
|
temp_buffer = Wire.read(); // Get A1M2 and A1 minutes
|
|
A1Minute = bcdToDec(temp_buffer & 0b01111111);
|
|
// put A1M2 bit in position 1 of DS3231_AlarmBits.
|
|
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>6;
|
|
|
|
temp_buffer = Wire.read(); // Get A1M3 and A1 Hour
|
|
// put A1M3 bit in position 2 of DS3231_AlarmBits.
|
|
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>5;
|
|
// determine A1 12/24 mode
|
|
A1h12 = temp_buffer & 0b01000000;
|
|
if (A1h12) {
|
|
A1PM = temp_buffer & 0b00100000; // determine am/pm
|
|
A1Hour = bcdToDec(temp_buffer & 0b00011111); // 12-hour
|
|
} else {
|
|
A1Hour = bcdToDec(temp_buffer & 0b00111111); // 24-hour
|
|
}
|
|
|
|
temp_buffer = Wire.read(); // Get A1M4 and A1 Day/Date
|
|
// put A1M3 bit in position 3 of DS3231_AlarmBits.
|
|
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>4;
|
|
// determine A1 day or date flag
|
|
A1Dy = (temp_buffer & 0b01000000)>>6;
|
|
if (A1Dy) {
|
|
// alarm is by day of week, not date.
|
|
A1Day = bcdToDec(temp_buffer & 0b00001111);
|
|
} else {
|
|
// alarm is by date, not day of week.
|
|
A1Day = bcdToDec(temp_buffer & 0b00111111);
|
|
}
|
|
}
|
|
|
|
void DS3231::getA2Time(byte& A2Day, byte& A2Hour, byte& A2Minute, byte& AlarmBits, bool& A2Dy, bool& A2h12, bool& A2PM) {
|
|
byte temp_buffer;
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x0b);
|
|
Wire.endTransmission();
|
|
|
|
Wire.requestFrom(CLOCK_ADDRESS, 3);
|
|
temp_buffer = Wire.read(); // Get A2M2 and A2 Minutes
|
|
A2Minute = bcdToDec(temp_buffer & 0b01111111);
|
|
// put A2M2 bit in position 4 of DS3231_AlarmBits.
|
|
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>3;
|
|
|
|
temp_buffer = Wire.read(); // Get A2M3 and A2 Hour
|
|
// put A2M3 bit in position 5 of DS3231_AlarmBits.
|
|
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>2;
|
|
// determine A2 12/24 mode
|
|
A2h12 = temp_buffer & 0b01000000;
|
|
if (A2h12) {
|
|
A2PM = temp_buffer & 0b00100000; // determine am/pm
|
|
A2Hour = bcdToDec(temp_buffer & 0b00011111); // 12-hour
|
|
} else {
|
|
A2Hour = bcdToDec(temp_buffer & 0b00111111); // 24-hour
|
|
}
|
|
|
|
temp_buffer = Wire.read(); // Get A2M4 and A1 Day/Date
|
|
// put A2M4 bit in position 6 of DS3231_AlarmBits.
|
|
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>1;
|
|
// determine A2 day or date flag
|
|
A2Dy = (temp_buffer & 0b01000000)>>6;
|
|
if (A2Dy) {
|
|
// alarm is by day of week, not date.
|
|
A2Day = bcdToDec(temp_buffer & 0b00001111);
|
|
} else {
|
|
// alarm is by date, not day of week.
|
|
A2Day = bcdToDec(temp_buffer & 0b00111111);
|
|
}
|
|
}
|
|
|
|
void DS3231::setA1Time(byte A1Day, byte A1Hour, byte A1Minute, byte A1Second, byte AlarmBits, bool A1Dy, bool A1h12, bool A1PM) {
|
|
// Sets the alarm-1 date and time on the DS3231, using A1* information
|
|
byte temp_buffer;
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x07); // A1 starts at 07h
|
|
// Send A1 second and A1M1
|
|
Wire.write(decToBcd(A1Second) | ((AlarmBits & 0b00000001) << 7));
|
|
// Send A1 Minute and A1M2
|
|
Wire.write(decToBcd(A1Minute) | ((AlarmBits & 0b00000010) << 6));
|
|
// Figure out A1 hour
|
|
if (A1h12) {
|
|
// Start by converting existing time to h12 if it was given in 24h.
|
|
if (A1Hour > 12) {
|
|
// well, then, this obviously isn't a h12 time, is it?
|
|
A1Hour = A1Hour - 12;
|
|
A1PM = true;
|
|
}
|
|
if (A1PM) {
|
|
// Afternoon
|
|
// Convert the hour to BCD and add appropriate flags.
|
|
temp_buffer = decToBcd(A1Hour) | 0b01100000;
|
|
} else {
|
|
// Morning
|
|
// Convert the hour to BCD and add appropriate flags.
|
|
temp_buffer = decToBcd(A1Hour) | 0b01000000;
|
|
}
|
|
} else {
|
|
// Now for 24h
|
|
temp_buffer = decToBcd(A1Hour);
|
|
}
|
|
temp_buffer = temp_buffer | ((AlarmBits & 0b00000100)<<5);
|
|
// A1 hour is figured out, send it
|
|
Wire.write(temp_buffer);
|
|
// Figure out A1 day/date and A1M4
|
|
temp_buffer = ((AlarmBits & 0b00001000)<<4) | decToBcd(A1Day);
|
|
if (A1Dy) {
|
|
// Set A1 Day/Date flag (Otherwise it's zero)
|
|
temp_buffer = temp_buffer | 0b01000000;
|
|
}
|
|
Wire.write(temp_buffer);
|
|
// All done!
|
|
Wire.endTransmission();
|
|
}
|
|
|
|
void DS3231::setA2Time(byte A2Day, byte A2Hour, byte A2Minute, byte AlarmBits, bool A2Dy, bool A2h12, bool A2PM) {
|
|
// Sets the alarm-2 date and time on the DS3231, using A2* information
|
|
byte temp_buffer;
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
Wire.write(0x0b); // A1 starts at 0bh
|
|
// Send A2 Minute and A2M2
|
|
Wire.write(decToBcd(A2Minute) | ((AlarmBits & 0b00010000) << 3));
|
|
// Figure out A2 hour
|
|
if (A2h12) {
|
|
// Start by converting existing time to h12 if it was given in 24h.
|
|
if (A2Hour > 12) {
|
|
// well, then, this obviously isn't a h12 time, is it?
|
|
A2Hour = A2Hour - 12;
|
|
A2PM = true;
|
|
}
|
|
if (A2PM) {
|
|
// Afternoon
|
|
// Convert the hour to BCD and add appropriate flags.
|
|
temp_buffer = decToBcd(A2Hour) | 0b01100000;
|
|
} else {
|
|
// Morning
|
|
// Convert the hour to BCD and add appropriate flags.
|
|
temp_buffer = decToBcd(A2Hour) | 0b01000000;
|
|
}
|
|
} else {
|
|
// Now for 24h
|
|
temp_buffer = decToBcd(A2Hour);
|
|
}
|
|
// add in A2M3 bit
|
|
temp_buffer = temp_buffer | ((AlarmBits & 0b00100000)<<2);
|
|
// A2 hour is figured out, send it
|
|
Wire.write(temp_buffer);
|
|
// Figure out A2 day/date and A2M4
|
|
temp_buffer = ((AlarmBits & 0b01000000)<<1) | decToBcd(A2Day);
|
|
if (A2Dy) {
|
|
// Set A2 Day/Date flag (Otherwise it's zero)
|
|
temp_buffer = temp_buffer | 0b01000000;
|
|
}
|
|
Wire.write(temp_buffer);
|
|
// All done!
|
|
Wire.endTransmission();
|
|
}
|
|
|
|
void DS3231::turnOnAlarm(byte Alarm) {
|
|
// turns on alarm number "Alarm". Defaults to 2 if Alarm is not 1.
|
|
byte temp_buffer = readControlByte(0);
|
|
// modify control byte
|
|
if (Alarm == 1) {
|
|
temp_buffer = temp_buffer | 0b00000101;
|
|
} else {
|
|
temp_buffer = temp_buffer | 0b00000110;
|
|
}
|
|
writeControlByte(temp_buffer, 0);
|
|
}
|
|
|
|
void DS3231::turnOffAlarm(byte Alarm) {
|
|
// turns off alarm number "Alarm". Defaults to 2 if Alarm is not 1.
|
|
// Leaves interrupt pin alone.
|
|
byte temp_buffer = readControlByte(0);
|
|
// modify control byte
|
|
if (Alarm == 1) {
|
|
temp_buffer = temp_buffer & 0b11111110;
|
|
} else {
|
|
temp_buffer = temp_buffer & 0b11111101;
|
|
}
|
|
writeControlByte(temp_buffer, 0);
|
|
}
|
|
|
|
bool DS3231::checkAlarmEnabled(byte Alarm) {
|
|
// Checks whether the given alarm is enabled.
|
|
byte result = 0x0;
|
|
byte temp_buffer = readControlByte(0);
|
|
if (Alarm == 1) {
|
|
result = temp_buffer & 0b00000001;
|
|
} else {
|
|
result = temp_buffer & 0b00000010;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool DS3231::checkIfAlarm(byte Alarm) {
|
|
// Checks whether alarm 1 or alarm 2 flag is on, returns T/F accordingly.
|
|
// Turns flag off, also.
|
|
// defaults to checking alarm 2, unless Alarm == 1.
|
|
byte result;
|
|
byte temp_buffer = readControlByte(1);
|
|
if (Alarm == 1) {
|
|
// Did alarm 1 go off?
|
|
result = temp_buffer & 0b00000001;
|
|
// clear flag
|
|
temp_buffer = temp_buffer & 0b11111110;
|
|
} else {
|
|
// Did alarm 2 go off?
|
|
result = temp_buffer & 0b00000010;
|
|
// clear flag
|
|
temp_buffer = temp_buffer & 0b11111101;
|
|
}
|
|
writeControlByte(temp_buffer, 1);
|
|
return result;
|
|
}
|
|
|
|
void DS3231::enableOscillator(bool TF, bool battery, byte frequency) {
|
|
// turns oscillator on or off. True is on, false is off.
|
|
// if battery is true, turns on even for battery-only operation,
|
|
// otherwise turns off if Vcc is off.
|
|
// frequency must be 0, 1, 2, or 3.
|
|
// 0 = 1 Hz
|
|
// 1 = 1.024 kHz
|
|
// 2 = 4.096 kHz
|
|
// 3 = 8.192 kHz (Default if frequency byte is out of range)
|
|
if (frequency > 3) frequency = 3;
|
|
// read control byte in, but zero out current state of RS2 and RS1.
|
|
byte temp_buffer = readControlByte(0) & 0b11100111;
|
|
if (battery) {
|
|
// turn on BBSQW flag
|
|
temp_buffer = temp_buffer | 0b01000000;
|
|
} else {
|
|
// turn off BBSQW flag
|
|
temp_buffer = temp_buffer & 0b10111111;
|
|
}
|
|
if (TF) {
|
|
// set ~EOSC to 0 and INTCN to zero.
|
|
temp_buffer = temp_buffer & 0b01111011;
|
|
} else {
|
|
// set ~EOSC to 1, leave INTCN as is.
|
|
temp_buffer = temp_buffer | 0b10000000;
|
|
}
|
|
// shift frequency into bits 3 and 4 and set.
|
|
frequency = frequency << 3;
|
|
temp_buffer = temp_buffer | frequency;
|
|
// And write the control bits
|
|
writeControlByte(temp_buffer, 0);
|
|
}
|
|
|
|
void DS3231::enable32kHz(bool TF) {
|
|
// turn 32kHz pin on or off
|
|
byte temp_buffer = readControlByte(1);
|
|
if (TF) {
|
|
// turn on 32kHz pin
|
|
temp_buffer = temp_buffer | 0b00001000;
|
|
} else {
|
|
// turn off 32kHz pin
|
|
temp_buffer = temp_buffer & 0b11110111;
|
|
}
|
|
writeControlByte(temp_buffer, 1);
|
|
}
|
|
|
|
bool DS3231::oscillatorCheck() {
|
|
// Returns false if the oscillator has been off for some reason.
|
|
// If this is the case, the time is probably not correct.
|
|
byte temp_buffer = readControlByte(1);
|
|
bool result = true;
|
|
if (temp_buffer & 0b10000000) {
|
|
// Oscillator Stop Flag (OSF) is set, so return false.
|
|
result = false;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*****************************************
|
|
Private Functions
|
|
*****************************************/
|
|
|
|
byte DS3231::decToBcd(byte val) {
|
|
// Convert normal decimal numbers to binary coded decimal
|
|
return ( (val/10*16) + (val%10) );
|
|
}
|
|
|
|
byte DS3231::bcdToDec(byte val) {
|
|
// Convert binary coded decimal to normal decimal numbers
|
|
return ( (val/16*10) + (val%16) );
|
|
}
|
|
|
|
byte DS3231::readControlByte(bool which) {
|
|
// Read selected control byte
|
|
// first byte (0) is 0x0e, second (1) is 0x0f
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
if (which) {
|
|
// second control byte
|
|
Wire.write(0x0f);
|
|
} else {
|
|
// first control byte
|
|
Wire.write(0x0e);
|
|
}
|
|
Wire.endTransmission();
|
|
Wire.requestFrom(CLOCK_ADDRESS, 1);
|
|
return Wire.read();
|
|
}
|
|
|
|
void DS3231::writeControlByte(byte control, bool which) {
|
|
// Write the selected control byte.
|
|
// which=false -> 0x0e, true->0x0f.
|
|
Wire.beginTransmission(CLOCK_ADDRESS);
|
|
if (which) {
|
|
Wire.write(0x0f);
|
|
} else {
|
|
Wire.write(0x0e);
|
|
}
|
|
Wire.write(control);
|
|
Wire.endTransmission();
|
|
}
|
|
|